
781 

for various values of the parameter a .W(mgl). The solid lines represent stable solutions and 

the dashed lines unstable Ones. It can be seen that as u increases the length of the 

interval (e*. %J), corresponding to stable solutions with amplitude A<-7r increases. The 

amplitude behaviour of the solutions under consideration, which depends on the dimensionless 

frequency "rt and the parameter e characterizing the magnitude of the forcing term, completely 
agrees with the theoretical results established above. 

As can be seen from Fig.3, for sufficiently small a @<a,= 3) there is a frequency 
interval in which there exists a second solution r,(t,t.) of the type under consideration with 
amplitude A,<% coinciding with r(t. ~1 for o -: w*. The solution zL(l.~l is unstable; unlike 
.I If, E) its amplitude increases with o and decreases with p. 
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THE PERTURBED MOJIONS OF A SOLID CLOSE TO REGULAR LAGRANGIAN PRECESSIONS' 

V.V. SAZONOV and V.V. SIDORENKO 

The asymptotic behaviour of a Lagrange gyroscope under the influence of 
a weak perturbing moment is investigated for the case of motions that 
are close to regular precessions. An averaged system of equations of 
motion is obtained in special evolutionary variables. The cases of a 
small constant moment and the presence of a cavity filled with highly 
viscous fluid are considered in detail. 

1. Tire eqwtions of notion ami statemmt of the problem. The motion of a heavy axisym- 
metric rigid body with a fixed point on the axis of symmetry (a Lagrange gyroscope) under the 
influence of a perturbing mechanical moment of arbitrary nature is described by the equations 

&' = -_(J.% - 9, otg6)9, + x sin ti $~ 6.11, (1.2) 
Qt,' = (lis6, - 52, ctg @)st, +- FM2 
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Here Q, 6 and v are the standard Euler angles, differentiation with respect to time 
t is denoted by the dot, h is the ratio of the body's axial and equatorial moments of inertia. 
x is ratio of the product of the mass of the body, the acceleration due to qravity and the 
distance of the fixed point from the centre of mass, to the equatorial moment of inertia. Y, 
and ~11, (i =I, 2, 3) are the projections onto the Rezal axes /l/ of the angular velocity 
vector and the perturbing mechanical moment relative to the equatorial moment of inertia, and 
p is a small parameter. If the projections of the above vectors on to the principal axes of 
inertia of the body are denoted by oi and ulna. then 

Eqs.(l.l) appear in the analysis of many applied problems /l, 2/. The purpose of this 
paper is to obtain solutions of these equations that are close to regular precession. The 

method of investigation is the averaging of Eqs.(l.l) over the unperturbed motion and the use 
of special evolutionary variables. Another method of averaging along the Lagrangian motion 
was used in /2-4/. 

2. Evolutionary variabtes. We consider unperturbed motion. For e-0 the general 
solution of system (1.1) is expressed in terms of the Jacobi elliptic functions /5/, with Q2, 

independent of time, 9,. Q,, and 8 depending periodically on t with period To, and II, and 
+ having the form 

$ p: c0,it -rm %JJ1 (t). CJ' ~ c0,t f 'I', (t) (".I) 

where $1 and '$1 are Te-periodic functions of t. The frequencies (I)+ = 2n!T~, w,p and (O', 
depend in a complicated manner on the values of the first integrals of system (1.1) with F ~~ 0; 

System (1.1) has a four-parameter family of stationary solutions 

(2.3) 

in which the constants $k and vO are arbitrary, and the constants (0~1~. Ok,,,. 61,". IV and (-) 

are connected by the relations 

These solutions are called regular precessions. 
Choosing as parameters for the family of precessions the quantities W, C-). 11” and wO, 

from relations (2.4) we obtain 

Q,,(RV. 0) = tg0 (hW& vd),'2, d : h"m-'- 4x COR 0 (2.h) 

Thus, in the general case, two regular precessions are possible, corresponding to dif- 

ferent signs in (2.5). From now on any expression that contains 9," will be assumed to refer 

simultaneously to both precessions. 
In the unperturbed system the variables I() and + are cyclic, and so for e=O 

closed subsystem of equations for Q,, Ql. and 6 can be extracted from (l-l), containizg 

Qs as a parameter. In the phase space (Q,. Q2,,6) we consider an integral manifold SW, n 

with a fixed value for the integral L, pertaining to regular precession with parameters W 

and 8 /6/. Its parametric representation has the form 

Sb,.,R = {(Q,, Qz, 8): P, = Q, (W, (3, c, Y), 63, (W. 0. c. v), (2.6) 
8 = 6 (W, O,c,v), 0 <v< 2n, O< c <CO (W-0)) 

where c and v stand for the amplitude and phase of the nutational oscillations. Atindividu- 

al solutions lying on the manifold Sw,e. Y = ofit + Yo. Using Lyapunov's holomorphic 

integral theorem /I/, (to apply Lyapunov's theorem it is necessary to reduce the order of the 
system using the integral I, == const), the functions Q,. & and 17 can be expressed In the 
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farm of the series 

(2.7) 

which converge for sufficiently small values Of /Cl. In particular, 1p = 0 + CCOSV+ 2 (ctgO-- 

2% sin 8!0,*)(3 - 2 COS v - c0S 2V) + O(S). 

Here Wt= 1/Q,* +d is the frequency of small nutational oscillations. 
In system (1.1) in the neighbourhood of the solutions (2.3) we shall make the local 

change of variables (Q,, &, %,fi,$,m)-+ (w,@, c,v,Ijr,cp) defined by relations (2.7). The new 
variables have a simple mechanical meaning: W and 8 distinguish the basic regular precession, 
while c specifies the nutational motion in the neighbourhood of this precession. The 
variables W, 0 and c are independent integrals of system (1.1) at &=O and are connected 
with R, L, and E by the relations 

Ii = hW, L = C&sin 8 _t hWcos C) (2.8) 

E = (UP + Q,,2 + o**cz)/'2 + x eos o + 0 (c") 

The change of variables reduces system (1.1) to a form that is convenient for the appli- 
cation of the averaging method /8/. 

3. Averaged equations for the evo2utionazy var%bles. We shall analyse the perturbed 
notion using the method of averaging in the form developed by Volosov /9/. We shall assume 
that the variables w. 8, and C are slow, and that the variables v, 9, and 'p are fast. 

The derivation of the equations for the evolutionary variables consists of making two 
changes of variables in succession 

(Q,, Q,, Q,,@,$, 'F)Lp (H. L.E, v,$, v) 2, (1/v, @9 c, v,+> v). 

in system (l.l), For R, L, and E we obtain the equations. 

(3.1) 

We then express R, L, and E in (3.1) in terms of W, 0 and c using relations (2.8), and 
obtain 

(3.2) 

Relations (3.2) are a system of linear equations with respect to the derivatives of the 
slow variables, whose determinant is 

The choice of sign in the latter relation is consistent with the choice of sign in (2.5). 
For cfO and df0, system (3.2) reduces to the form 

w’ = EZz,, 0’ = EZ,, c’ = &Z3 (3.3) 

zi = 2; (W, 8, C, v,g, rp) (i = 1, 2, 3) 

We shall average the right hand side of Eqs.(3.3) over Lagrangian motion with fixed slow 
variables. The averaging procedure is complicated by the unevenness of the variation of the 
fast variables 9 and 'P because of the presence of the periodic component. However, 
arguments similar to those contained in llO/ enable us to establish that in the case of 
rational incommensurability of the frequencies ws?%, and alp averaging over time is 
equivalent to independent averaging over v?JI, and cp. Thus, for an arbitrary function 



from which the result of the averaging does not depend on the initial data v(,, I/,~. and (I 0 
As a result we obtain an averaged first-order approximation system 

M;’ ?I-,, (9’ :- F I.?, (.’ F v:, 1::. ‘I) 

l’j = l’j” (W. I-)) A c’1 vj, (W, “) + 0 (t-1) (j ~-- 1 2) 

L’:, 7 c IV:,, ( w., (3) .~ 0 (c)I 

in which previous notation now stands for the averaged variables. 

Because the second change of variables does not affect the fast variables, in construct- 
ing system (3.4) the averaging can already be carried out in system (3.1), and then the change 
of variables (K, 12, @-+(W,(~,C) can be made in the averaged system. 

Additional analysis shows that Eqs.(3.4) also hold in the case c = 0. In the phase 
space of system (3.4) the condition c = 0 defines an integral manifold. Solutions lying on 
this manifold correspond to quasistatic evolution of regular precession without the excitation 
of nutational oscillations /ll/. Because there are no terms linear in c in the first two 
equations of system (3.41, small nutational oscillations only weakly influence the behaviour 
of the variables W and 6). 

The conditions lral(~,@)~ 0 determine attractive and repulsive domains in a 
neighbourhood of the manifold c: 0. In the attractive domain the amplitude of small nu- 
tational oscillations decreases, and in the repulsive domain it increases. The characteristic 
time for changes in the amplitude of the oscillations is comparable with the characteristic 
time for changes in the variables W and C-1. In the course of the perturbed motion's evolution 

multiple shifts between growth and decay regimes for the nutational oscillations are possible 
if the solution passes from the repulsive domain to the attractive domain, and vice-versa. 

We shall use the above method to analyse the perturbed solutions of system (1.1) in 

specific problems. 

4. The influence of a smaZ2 constant moment. We shall consider the evolution of a motion 

produced by the influence of a small moment, constant in a coupled coordinate system, with 

components Em,. FmZ1 Emg (where (~(1 and I!L, = consl). In the case being considered system 

(3.1) can be written as follows: 

Following the method given above, we construct an averaged system of equations of motion. 

Because the right hand sides of the equations of system (4.11 do not depend on the angle of 
precession $1 averaging along the unperturbed motion reduces to independent averaging with 

respect to v and 'i Using the relations 

we obtain 

Here E, = E(W,@,O) is the total energy of the body for motion in the regime of regular 
precession (c = 0). Because of their complexity we shall not give explicit expressions for 
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t_he partial derivatives auaw, dude, ati,,aw, do,ia@, and dE,laO found in (4.2). 

The system of equations obtained does not contain m, and m2, and so the evolution of 

the motion is solely determined by the projections of the perturbing moment onto the body's 
axis of dynamical symmetry. 

For c = 0 the trajectories of system (4.2) satisfy the integral relation 2xcosH + &* L 
const and fill the domain U = ((W,O) :O( 0~ n, d(W, O)> 0) in the (W,O) plane. (Because 
of (2.5) and (3.3) the condition d (W, (3) > 0 is a condition for the physical achievability 
of the precession and the solubility of Eq.(3.3)). Depending on the choice of sign in (2.5), 
two types of phase portrait are possible for system (4.2) on the integral manifold c = 0. 
With the help of identifications of segments of the boundaries d (W,O)= 0 of phase 
portraits of different types and the continuation of trajectories as solutions of differential 
equations, we obtain a complete phase portrait showing the general picture of motion on the 
manifold. 

Fig.1 

u a 
I 

u b 
I 

Fig.2 

It is convenient to present the complete phase portrait in a more traditional form, 
mapping it onto the plane (QYl, u) where oe,, = S&,/sin @ is the angular velocity of the regular 
precession and U = CoS@. To make the mapping single-valued the choice of sign in expression 
(2.5) for %(w, 0) should be consistent with the form of the corresponding phase portrait. 
Fig.1 shows the complete phase portrait of system (4.2) in the (06~~ U) plane for the case 
h = V,, X==l and m,<O. The diagonal bars on the phase portrait show the repulsive 
domain of the integral manifold c = 0. 

In the case being considered the first approximation of the averaging method can have 
resonances when orp = 20s (1 =0,+1,&Z,.. .). Investigation of the resonances lies outside 
the remit of this paper. The results of direct numerical integration of system (1.1) confirm 
the presence of characteristically resonant effects for w,-0 and for 16)~ I=:oe. For example, 
according to /12/, trajectories with initial conditions that only differ by the value of the 
angle of proper rotation, diverge by an amount of order 1/i after going through a resonance. 

5. The motion of a Lagrange gyroscope with a cavity filled with highly viscous fluid. AS 

was established in /13/, the influence of a highly viscous fluid on the motion of a rigid body 
is equivalent to the action on the frozen system of an external moment 

ml = E i [P,,b, + (o*P,; -w3P2J ai] 
i=l 

(123) ( 5 . 1 ) 

where II PL,Ilf,j=~ is a constant symmetric positive matrix depending on the shape and dimensions 

of the cavity; ai and bi (i = 1.2.3) are respectively equal to the derivatives w,' and CO<", com- 
puted using the unperturbed equations of motion (e = 0). The small parameter 
sionless combination of parameters from the body, cavity and fluid. 

E is a dimen- 

Following the above method, 
order of approximation: 

we obtain for the slow variables an averaged system of first 
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System (5.2) has the first integral I, (IV, (-)) = CClll~l. expressing the constancy of the 
projection of the total kinetic moment of the body and fluid onto the vertical. 

The analysis shows that the phase portrait of the system in question on the integral 
manifold c=O after the change of variables (w,c))+ (wllO, U) is symmetrical about the 
axis O,to = 0. The behaviour of the system's trajectories on the manifold depends signifi- 
cantly on which of the interval (0, 1). (1, 4 3)’ C’Q, ‘) contains the ratio of the moments of 
inertia T.. Examples of phase portraits of various kinds are given in Fig.2, a-d, where 
i, = "i,, j,5.',, and i,'B respectively. Because of the symmetry we need only consider the domain 
of positive values for wli.0 in the phase portrait. 

For h#l the system of Eqs.(5.2) has stationary solutions in which r=O while the 
variables kJ and (3 are connected by the relation (h - 1)o,bo2 (IT,-, @) .=: XICOS (-), defining a one- 
parameter family of permanent rotations of the body and fluid as a single body (curve S on the 

phase portraits in Fig.2). 
It should be noted that in the neighbourhood of the permanent rotation (11~ = (1 and the 

averaged system (5.2) is formally inapplicable (because of the exclusion of the case of a 
cavity with axis of symmetry parallel to the axis of symmetry of the body). However, the 
existence of these stationary motion regimes of a body with a viscous fluid can be proved 

directly for system (1.1). 
All permanent rotations are stable for the variables U, 6) and c when o< b< 1 and 

unstable when I< h,<" :,. If ' :( < I< :! then only permanent rotations lying on the segment 
s's" of the curve S in Fig.2d are stable. 

In the neighbourhood of permantent rotation, the variable c in the linear approximation 
evolves independently of the variables W and (_. The characteristic time for the evolution 

is T, =m I p, 1-1 for the variable c and Tz = 1p2 I-’ for the variables W and 0, where 

(*LX) 

are the roots of the characteristic equation of the linearized system (5.2). Another root of 

this system is p3 = 0. 
As well as permanent rotations, there are trivial stationary regimes in which the body 

and fluid rotate uniformly about the axis of dynamical symmetry directed along the vertical. 
The trivial regimes can be represented by points at the upper and lower boundaries of the 
phase portrait. The behaviour of trajectories of system (5.21 near the boundaries can be 
found using the results of investigations of the stability of the trivial regimes by Lyapunov 

methods /14/. 
Properties of the perturbed motion established by considering the averaged system (5.2) 

are in good agreement with the results of numerical integration of the original system of 
Eqs.(l.l). 
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THE LOCAL gOUNDEDNESS OF THE PERTURBED MOTIONS OF A GYROSCOPE IN GIMBALS 

WITH DISSIPATIVE AND ACCELERATING FORCES* 

S.A. BELIKOV 

The motion of an unbalanced gyroscope in gimbals in a central Newtonian 
field of forces is considered, taking the masses of the suspension rings 
into account. It is assumed that there is a moment of forces of viscous 
friction acting on the axis of rotation of one of the rings, and there 
is an accelerating (electromagnetic) moment applied to the axis of 
rotation axis of the other ring. The equations of motion have a partial 
solution such that the mean velocity of the outer ring is perpendicular 
to the direction from the centre of gravitation S to the stationary 
point 0, the middle plane of theinnerring contains this direction, and 
the gyroscope rotates about SO with an arbitrary constant angular 
velocity. 

The equations of perturbed motions of the system in the neighbourhood of the correspond- 
ing state of equilibrium are obtained to within terms of order three. The characteristic 
equation of the system is considered and the coefficients of the equation are found in the 
region i;O of admissible values of the parameters. The question of the distribution of eigen- 
values with respect to the imaginary axis is studied. A region in f, is constructed in 
which the pairs of complex conjugate eigenvalues have small real parts among which there are 
some positive ones, and the absolute values of the resonance mistuning between the imaginary 
parts are not small. In this region we obtain sufficient conditions for local uniform 
boundedness of perturbed motions of the gyroscope in gimbals with dissipative and accelerat- 
ing forces with respect to the partial solution mentioned above. These conditions are found 
in the form of constraints for the coefficients of the normal form and, eventually, for the 
original parameters of the system and the real and imaginary parts of the eigenvalues. To 
provide illustrative interpretation, some special cases are considered and the regions of 
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